A day at Gascoigne Wood Mine.

My thanks to Neil Rowley for providing all the information in this post. This is an article that Neil wrote for a mining history society a few years ago. He has kindly shared ‘A Day in the Life of the Selby Complex’ from when he was Deputy Manager at Gascoigne Wood Mine.

A Day in the Life of the Selby Complex

Wednesday 29th May 1996

Gascoigne Wood Mine 1996

Cable Belt Inspection

Underside of ASL conveyor showing spillage

Map 1

Approximate Location of Working Faces and Main Conveyors in May 1996 (Surface/Underground correlation is by personal estimate and is for general interest only)

Area covered by Planning permission approximately 100 square miles

Introduction

Whilst clearing out my garage recently I found a folder of reports dating from 1996. At the time I was Deputy Manager at Gascoigne Wood Mine. The reports relate to the daily operations of the Selby Coalfield as seen from the control room at Gascoigne Wood.

I feel that these reports give good insight into the day to day working of a huge industrial complex which is now quickly receding into history.

The complex was made up of five producing mines with one common coal clearance system which brought the coal to the surface at Gascoigne Wood. Map 1 is adapted from an early brochure illustration and shows the general layout. Note that this early base map shows the East Coast Main Line running north/south through the centre of the mining area.  Before coal production commenced, the railway was rerouted to the west of the production area to avoid subsidence issues, an example of the grand scale of the project.  When I commenced my employment at the complex in 1980 I was told that it should have a life of 25 years, a surprisingly accurate prediction as final closure occurred in 2005.

All coal production from the complex at this time was from the Barnsley seam and the mining system employed was mainly retreating longwall.

The Reports

Each individual mine in the complex would have its own detailed daily reports but as Gascoigne Wood was the point at which all coal came to the surface to be prepared and dispatched, the GW reports needed to contain some basic information from each of the producing mines in order to enable fair allocation back to the individual mines of tons produced.  Their operating budgets depended on it!

I chose a date of 29.5.1996 at random to illustrate the operation and sheer size of the complex. At the time the complex was owned by RJB Mining. Privatisation of the industry having taken place in late 1994.

Report 1 is the Daily Production Record for this date.

Safety was taken very seriously and reports generally commenced with this aspect.

It can be seen that there had been one minor accident at Gascoigne Wood during the day. A man had received an injury to the roof of his mouth from a sharp object.  This somewhat unusual incident would have been discussed in some detail at the Manager’s morning meeting.

Then on to the production reports.

Wistow Mine had three producing longwall faces on this date.  H92s was at the deeper end of the Wistow take and was of conventional length.  H74s was shallower and hence shorter to control subsidence to within agreed limits. H134s was very short.  Hence H92 could achieve 15.8 strips in the day, 74 managed 17.4 but 134 amassed 30 very short strips.

Riccall Mine had two faces. H478s was successfully mining an area to the south of Riccall village. H504s had just come into production a couple of weeks earlier. This may account for the lower than expected number of strips. It was located to the east of the shafts under Skipwith common.

Stillingfleet Mine had two faces both performing well. H302s was mining the area to the west of Escrick Brick Works. H266s was mining the area to the South of Naburn Lock.

Whitemoor Mine was operating two faces. H641s was to the south of the Whitemoor shaft pillar and H632s was north of North Duffield village. The low number of strips combined with the high ash content that we see from other reports suggests that the faces were in faulted areas and suffering from roof control problems. Depth below the surface of these workings was approximately 900m.

North Selby Mine was the deepest of the Selby mines and was producing from two faces. H906s was to the East of the shafts working at a depth of over 1000m. H856s was near Deighton village.  Both seem to have been performing pretty well on this date. As a rough estimate I would say that the coal from H906s face had an underground journey of over 20Km through the conveyor system of the complex before it reached the surface at Gascoigne Wood.

Total mineral transported to the surface via the Gascoigne Wood conveyors on this day was well over 60,000 tonnes. This was pretty much a normal daily total for this period.

Total saleable coal leaving in the trains was 50,641 tonnes

1996 was the 5th successive year where annual saleable output exceeded 10 million tonnes. Profit for the complex in 1996 was reported to be £24.464 million.

Sadly the good times were coming to an end and production was to gradually fall away in the coming years as the better mining areas became worked out.

Report 1

Report 2 –Delay analysis for coal clearance systems 29.05.96

The two spine tunnels coming to the surface at Gascoigne Wood each contained a different type of conveyor.

The South Spine contained the ASL – named after Anderson Strathclyde Ltd, the designer and manufacturer.  It was a 12.2 Km long steel cord conveyor running at high speed and capable of over 2000tph.

The North Spine contained the Cable Belt.  The cable belt consisted of a very flat profile carrying surface resting on two steel cables.  It was slightly earlier technology than the ASL  and the flat profile gave rise to quite a lot of spillage, especially if one of the pulleys supporting the cables had a bearing failure, in which case the vibration caused the coal to be shaken off the conveyor.  It normally ran at 1000tph but when demand for coal clearance was not so great, it was shut down and the ASL was used alone.

South Spine Delays

The first group of delays with the prefix ROM (Run of Mine) relate to stoppages of surface conveyors downstream of the ASL which in turn cause the stoppage of the main spine conveyors.  CO7c was a common offender in this respect. It was the oversize conveyor feeding the barrel washer infeed stockpile and prone to large pieces of stone or timber causing misalignment or blocked chute.

Many of the other delays refer to belt torn protection being operated at various locations. B2 being Wistow bunker, B6 Stillingfleet Bunker etc.  The belt torn probe was a wire stretched from side to side beneath the belt.  If a piece of rubber was trailing from the belt then it would hit the wire and stop the conveyor.  The conveyor was running at high speed so would take a little while to stop and the bunker operator would have some distance to walk to find the offending piece and cut it off.

Rollers were changed by a belt patrol team who did their inspection from a train travelling alongside the conveyor. The inspector was pretty much lying down in the vehicle so that he could see the underside of the conveyor.

Later in the evening problems start to occur with a steel cord coming out of the belt.  This would need to have been chopped off and its position within the 24Km of belting noted for later vulcanized repair.

North Spine Delays

This conveyor was affected by the surface conveyor stoppages in the same way as the South.

The report shows several  pulley changes and a rope off pulleys incident which were speedily dealt with. The numbers following the entry refer to the stand number on the conveyor structure. The last entry of “portal bubble trip” refers to a detector which was looking to ensure that the rubber belt was lying flat down on the cables.  This consisted of a wire stretched at right angles above the carrying surface which would stop the conveyor if it was hit by anything.  The trip wire had probably been hit by a large lump of coal on the conveyor and did not indicate a problem with the conveyor belting itself.

Report 2

Report 3 Gascoigne Wood  Manager’s Morning Report

This is the summary of the day’s activities that landed on the Manager’s desk the following morning and a summary would be reported on to the Group Director.

The information in the first section predominantly comes from the Westerland feeders delivering onto the spine conveyors from each of the bunkers that the producing mines fed into.  The feeders were wide slow flat conveyors of known bed depth and controllable speed which gave a pretty accurate record of tonnage throughput.  Mounted over each feeder was a sensor picking up natural gamma radiation from the material passing beneath. Shale gives off more gamma than coal and so with careful calibration the percentage ash could be determined.

Coal from Whitemoor had to pass through Riccall Mine before it reached the spine conveyors and similarly North Selby coal had to pass through Stillingfleet. The ash monitors and weighers for these mines were located on the boundary between the mines and so were not under neutral control.  This was often a source of much dispute between the mine managers, each seeking to gain maximum tons and hence income for their mine.

As a check on these ash measurements the GW Deputy Manager regularly visited the individual mines to do a rough face survey, measuring thickness of coal cut, amount of stone falling from the roof and thickness of floor dirt taken.  This was a part of the job which I always found very interesting.  These findings could then be used to adjust the ash content should it be necessary.

Belt weighers can vary greatly in accuracy so tonnage arriving at surface was adjusted to bring it in line with known weight dispatched over the certified weighers on the railway and changes in stock levels.

To reduce ash levels to those acceptable to the power stations a proportion of the coal needed to be washed and then re mixed back in.  At this time there were two washing plants operating – The barrel washers which treated the larger material and the dense medium cyclone and spiral plant which treated the medium sizes.  The undersize went straight through to form the basis of the blend. Tonnages into each process can be seen on the sheet.

The ash level to the power stations was running at 17.1% and we would be looking to bring this down a little by the quarter end.  The customer paid on calorific value rather than per ton so a slightly high ash content would result in a lower return per ton.  A factor critical to the customer was the handleability of the product. The last thing they wanted was coal sticking in the wagons and holding up the discharge of trains. Poor handleability was related to some extent by moisture content, which on this day was nicely in spec at 10.7, but could be more significantly affected by the MRF content.

MRF stands for Multi Roll Filtercake.  This was produced by squeezing the moisture out of the finer material in the barrel washer plant.  MRF had a good coal content but also contained fine clay particles which could cause handleability problems.  It was obviously in everyone’s interest to send as little of this material to the tip as possible but blending it into the product had to be done cautiously to avoid sticky trains.  A very fine balancing act.

A small amount of house coal was also being produced.

Three trains of stone left site to be disposed with domestic waste in Wakefield, the rest of the discard was disposed of in a very carefully constructed tip facility on site, with MRF cake enclosed in cells of coarser material. HAU stands for High Ash Undersize, of which 183,000 tons were on stock waiting to be blended back into the product when ash content from the mine reduced.

Report 3

 Conclusion

This has been a very brief view of the activities taking place on this fairly typical day in 1996.  The sheer size of the operation is clear to see with over 60,000 tonnes of mineral being brought to the surface and over 50,000 tonnes being dispatched to power stations throughout the country in a single day.  

As with many mining projects, the geology of the area proved to be not as straightforward as anticipated in the early planning stages causing production to slow in later years.  The basic design of the complex required high throughput to achieve cost efficiency and falling tonnages resulted in a rising cost per ton, leading to eventual closure in 2005.

Hopefully these reports give a glimpse of the coalfield operating at its designed output level, as it did throughout much of the 1990s, and give some indication of the tremendous engineering achievements and degree of human endeavour that made up this very bold project. 

***

Again, many thanks to Neil Rowley who was Deputy Manager at Gascoigne Wood Mine and who provided the information and memories in this post.

Qualter, Hall Engineering and the Selby Coalfield: Wistow No. 1 Winder.

The second of the two winders to be installed at Wistow Mine was a tower mounted, six rope, friction winder (Koepe). This winder was installed over the downcast shaft and had a single cage with counter balance weights. The cage was designed to carry 170 men on two decks or 16 tonnes of materials. To give some idea how large the cage at Wistow Mine was, a complete Dosco Dintheader heading machine could be loaded and transported underground on the cage.

They were the largest cages in the UK and weighed nearly 24.7 tonnes.

Below is the pictorial history of the installation and commissioning of the No1 winder.   

The cage had to be manufactured and transported in two parts due to its sheer size.

The final pictures are the fitting and commissioning of the six ropes on to the 24.7 tonne cage and counterweight.

The cages on the friction winders in the Selby Coalfield were all tilting deck type. The middle section of the cage has central pivot points on both sides of the deck. Two hydraulic rams are mounted to the lower and middle deck and when operated the middle section is tilted and the load is held at an angle in the cage. This allows loads of up to 8.2 metres long. This system allowed the long, square section girder work, used in the underground bunker areas to be transported safely within the cage without the need to sling underneath the cage as used at many collieries.

Many thanks to Lisa Butterworth, Marketing Manager and George Wild, Company Secretary at Qualter, Hall and Co Limited for their time and for the use of the amazing photographs from their archive.

Qualter, Hall Engineering and the Selby Coalfield: Wistow No. 2 Winder.

Qualter, Hall and Co Ltd is a very famous and world renowned heavy and mining engineering company. When the Selby Coalfield project was started a huge amount of mining engineering expertise was needed to develop the coalfield. The five mines in the complex needed two winders per site to supply equipment and transport the men underground. Mine car handling plants to clear the coal and rock produced during the development phase were also needed at each mine to enable the underground developments to take place before the final connection to Gascoigne Wood Mine was completed. At this point all production came to the surface via the two huge trunk conveyors. Qualter, Hall was chosen to design, supply and install the new, state of the art winders and coal handling plants at each mine.

The first satellite mine to be sunk and equipment installed was Wistow Mine. This was the smallest site at only 29 acres and the shallowest mine in the Selby Coalfield. It was also the first mine to start production in July 1983.

Wistow was the only mine in the complex to use a tower mounted friction-winder (Koepe) on the No1 downcast shaft. All the other mines in the complex installed the friction winder on the No2 upcast shaft .

The winder installed on Wistow No2 upcast was a ground mounted, double parallel  drum winding engine with twin cages. Each cage would carry 60 men or 8 tonnes of material. It was the first of the two winders to be installed at Wistow Mine. This shaft was used for the mine car handling plant during early development of the mine.

Below is a pictorial history of the manufacturing and the installation of Wistow Mine No2 winder and mine car handling plant.

During the installation of the No2 headgear the two cages were manufactured and transported from the works at Barnsley onto site for installation. 

Each double deck cage weighed 4.5 tonnes  and were made of aluminium.

Once the No2 upcast shaft headgear was operational in May 1981 the protective cladding was installed to allow the building of the airlock to progress. 

With the cages installed and winder fully operational the winder was commissioned for man riding and use as part of the mine car handling plant.

During this period the surface mine car handling plant and outfeed conveyor system was installed to enable the development mineral to be processed. The double deck system, traversers, LOFCO mine car feeder chains and mine car ramming system enabled very efficient loading of empty, and disposal of full, mine cars to and from the shaft.

The underground coal clearance system to Gascoigne Wood Drift Mine was completed in January 1983 and the use of the surface mine car handling plant ceased and the equipment was removed.

Many thanks to Lisa Butterworth, Marketing Manager and George Wild, Company Secretary at Qualter, Hall and Co Limited for their time and for the use of the amazing photographs.

Memories and Artworks of Karl Jarrett.

The use of non intrinsically safe and non flameproof cameras and photographic equipment is illegal except in very controlled circumstances in UK coal mines. This is due to the occurrence of methane gas, which is an extremely explosive gas. All electrical equipment used in a mine is tested and certified for use in this environment.

Whilst working underground as a faceworker, heading man and later a deputy at Whitemoor Mine, Karl Jarrett sketched his underground environment and the jobs he worked on in his note book. You can see from the artworks below that he captured the very difficult, hot and dangerous conditions we all worked in. 

Below are the memories of Karl when he worked at Fryston Colliery and Whitemoor Mine.

I started at Fryston Colliery in 1980 aged 16. My job was supplying materials to the coal faces and headings in the Beeston seam.
In 1982, aged 18, I completed my coalface training. I then became part of a heading team developing the underground roadways.

Changing shearer cable on 33s. 1982.

Fryston Colliery snap time stopping the belts. 1982.

Holman Borer, Fryston Colliery 86s heading. 1982.

Making stub heading for area borers in 76s Tailgate. Fryston Colliery. 1983.

During 1984-85 I was on strike with the N.U.M. and went picketing almost every day.

Our brave Boys in Blue. 1984.

In 1985 when the year long strike finished we all marched back to work behind the Fryston Branch Union Banner.
In the same year the Beeston seam closed due to a fire on 76s face. Due to the loss of the Beeston seam I started working in an advanced heading on 25s coalface in the Flockton seam.

Carrying a Cruciform on 25s. 1985.

In 1986 Fryston Colliery closed and I was transferred to Gascoigne Wood on loan from Whitemoor Mine for 8 weeks.

When I transferred to Whitemoor Mine in 1986 I became a roadheader machine driver working as part of a heading team.

Holing through to Riccall Mine. 1986.

Tank slit at Whitemoor Mine. 1986.

Whitemoor/ Riccall Mine Connection. 1987.

Dalek at Riccall Bunker. 1988.

Whitemoor dragging beam. 1988.

In 1988 I completed my Rescue Training and became a part time Mines Rescue Brigadesman at Whitemoor Mine.
In 1990 I started working on coal faces as a Shearer driver.

Whitemoor Mine H624s face  salvaging hydraulic props. 1992.

Tailgate from Hell. Whitemoor Mine. 1995

I completed my command supervisors (deputies) qualification and worked as Deputy for about a year before retiring due to health problems in 1998.

All my mining drawings are real places where I’ve worked and events I’ve seen or been part of and have been drawn from memory and sketches I did at the time.

Karl

Many thanks to Karl for giving me his time, his memories and access to his amazing artworks.

The development of Whitemoor Mine.

The shafts at Whitemoor were the second deepest in the Selby Coalfield. Number 1 shaft was 931m and Number 2 shaft was 941m deep. During the sinking of the Number 2 a European record of 131.2 metres of fully concrete lined shaft was achieved in a month. After completion of shaft sinking in June 1985 the underground infrastructure to develop the mine, pit bottom rope haulage system and coal clearance system was started. Whitemoor was the only satellite mine in the Selby Coalfield to use a rope haulage for transport of equipment and for manriding purposes. This was due to the pit bottoms being deeper than the Barnsley seam. Four, 250m drifts at a 1 in 4 incline were developed by Thyssens mining contractors to access the main lateral roadways in the Barnsley seam. The first two faces to be developed east of the pit bottom were H01Bs which was 200m long and was approximately 800m from the pit bottom and 240m long, H02Bs, 1050m from the pit bottom. Both faces were taken off the East Return Roadway. The faces were worked from South to North. Four lateral roadways were developed to the east of the mine and a single conveyor roadway driven to the west connection with Riccall Mine. The conveyor  roadway had the rope haulage installed for manriding and transport running east and west sides of the mine.

A 6.6kv, 750kw double drive, steel cord conveyor identical to the one installed at Riccall Mine, ran 3000m from the Riccall Connection at the west of the mine to the faces at the east of the mine passing through the pit bottom area. The connection to Riccall Mine South Conveyor Road was  made in November 1986 using a Dosco Mk2A Revised Hydraulics Roadheader with a further connection to the South Return Roadway made in December 1987. An 8m high, 80m long Drive House and a Bunker area were created at the connection for the Whitemoor coal production to start in January 1988. This conveyor loaded onto the Riccall Mine Steel Cord Conveyor.

Plan showing Whitemoor and Riccall Mine Steel Cord connection.

The next face to be worked starting production in 1989 was H621s at the west of the mine. This face loaded straight onto the Riccall Mine Steel Cord Conveyor. H622s and H624s were the next two faces at the west of the mine starting production in 1990 with developments underway at the east of the mine for H615s face which started production in 1991. During the production of  H624s the face hit some faulted areas which created cavities needing remedial work. During the remedial work, the face was shuttered and straw was used as packing along with pumped liquid cement. This system was used to consolidate the face through the faulted areas. Very soon after the use of the straw infill on H624s face, H444s face at the south side of Riccall Mine became affected with mice. The first time it was apparent that we had the thieving rodents was snap wrappings were found torn and food stolen. Eventually the mice were seen all around the workings at Riccall Mine.

Mice were always a problem at the older pits due to ponies being used underground. The associated straw, hay and food usage meant the mice were inadvertently brought underground in these bales of bedding and hay feed bales. We could only assume the same thing happened with the straw packing bales used on H624s face.

Plan showing faces worked at the West of Whitemoor Mine adjacent to Riccall Mine.

In 1991 the face headings were developed for H626s and H623s, the last two faces at the west of Whitemoor Mine. These face were adjacent to the faces worked at the south and south west of Riccall Mine. H623s started production in 1991 with H626s starting production in 1992. The lateral roadway to H626s was extended to the west and made a connection with the Riccall Mine South West Trunk as an intake roadway for the faces worked in that area. H626s finished production in 1993 and production was transferred to the east of the mine.

The east side workings were extremely hot due to the depth of the seam at nearly 1000m. Floor heave and weighting was also a problems as the mine progressed further eastwards.

When the East Conveyor lateral roadways were completed and H615s face was producing coal, the lateral roadways to the north and south for the next phase of developments were started.

The North East Lateral headings were driven 1000m to the north where a junction was created. The headings then developed 2500m towards the eastern limit of planning permission for the next five coal faces starting with H630s in 1993. The faces at this part of the mine used Longwall International face equipment and Joy 390kw 4LS Shearers. H631s started production in 1994 followed by H632s in 1995. These three faces worked from north to south. The next face panel was not worked and the next two faces, H634s and H635s were developed towards the east boundary of the coalfield at the River Derwent working on an east to west orientation. H635s face was the last face at Whitemoor Mine which started production 20th February 1998 and finished production on the 8th June 1998.

The South East Lateral headings were driven 2000m to access the next five coal faces starting with H616s in 1992. This area of the mine used Longwall International face equipment and BJD 300kw Ace shearers with face lengths of 210m. H617s was the next face in production which started in 1993 with H619s, H620s starting production in the next two consecutive years. The coal to the south of H620s was never developed. The last coal face in the south east of the mine was H641s which was worked west to east. This face was 235m in length with face gate length of 1850m. This face started production in 1996 and was completed in 1997.

Whitemoor Mine showing all the faces worked.

All the faces at the east of the mine used roofbolts as primary supports and were developed using JCM 12 Continuous miners. All lateral roadways were developed using 58 tonne, 393kw Dosco LH1300 or Anderson Strathclyde RH22 Roadheaders. Contractors were used to carry out development and salvage work from 1993 with British Coal / RJB Mining workers employed to work the coal faces. Whitemoor Mine achieved it’s weekly record of 64,000 tonnes in February 1993 and produced it’s annual record production of 2,210,000 tonnes of coal in 1994.

During the 10 years of production Whitemoor Mine used diesel and battery free steered vehicles along with diesel and battery locomotives along with the rope haulages to supply the underground equipment and for manriding.   

List of Coal Faces at Stillingfleet Mine

Plan of coal faces at Stillingfleet Mine with seven worked in the North Selby Mine area.

The first coal faces at Stillingfleet Mine were worked from the east / west lateral roadways. The first face worked in Jan 1988 was H01Bs on the west side of the mine. H01Cs started production in May 1988 at the east side of the mine. The lateral heading to the east of the mine was the connection with the North Selby Mine lateral conveyor roadway called West 2 and was completed in July 1989. The heading was driven by two Dosco Mk 3 roadheaders with heading being driven from both mines simultaneously and was over 3,600m long on completion.

The early face developments were driven using Dosco Mk2a Revised Hydraulics roadheader setting arch supports with Dosco Mk3 roadheaders driving the lateral roadways. As the mine progressed the face heading development roadheaders were replaced with BJD flat chain mat continuous miners (Heliminers) and roof bolting replaced the arch supports to achieve faster drivage rates. Lee Norse LN800 continuous miners were also used in the  mid 1990s. 

Dosco LH1300 roadheaders were used for the lateral roadways to replace the Dosco Mk3 roadheaders. 

The Gascoigne Wood coal clearance connection roadway to the south of the mine was completed in Dec 1987 to load coal into Gascoigne Wood Mine, via a 2000 tonne, 7.5m diameter staple shaft called Bunker 6. A ventilation connection already existed from Mar 1987 and this was kept in use with a .8m diameter borehole.

Plan of Bunker 6 and Ventilation Borehole Connections to Gascoigne Wood Mine

The Bunker 6 Westerland feeder coal clearance connection from Stillingfleet Mine.

The conveyors in the east and south lateral roadways at Stillingfleet Mine had to transport coal from North Selby and Stillingfleet Mines. Roadways in the drive house areas of 5m high by 7m wide, square section stanchion girders were created to house the double, 6.6 K.V. 750kw, steel cord conveyor drives. The South Drive House was situated at the furthest point of the south lateral roadway which loaded onto a lower lateral roadway which delivered via a 2000 tonne staple shaft into the Gascoigne Wood Spine Tunnels.

Stillingfleet Mine developed the east and west lateral headings to the furthest extent and worked faces from 1988. The west side of the mine worked 12 faces, the last being H219s in 1998 and the east of the mine worked 6 faces, the last being H256s in 1995 very near to the North Selby Mine workings. During this period the north lateral headings were developed and a further north east lateral was driven where 2 faces were worked. As the mine progressed northwards a west and east lateral was developed with 9 faces worked from 1995 to 2002.

The South side of the mine had east lateral heading developed and started production in 1995 with H300s and finished with H307s in 2004.

When North Selby and Stillingfleet Mine merged in 1997, reserves became available to be worked from Stillingfleet Mine in the North Selby area. Seven faces were worked in this area, the final face being H853s which finished production in August 2004, one week after H272s.

From production starting in Jan 1988 until closure in August 2004, Stillingfleet Mine worked 49 longwall coal faces, 7 of which were in the original planned area of North Selby Mine. The faces were worked using Anderson Strathclyde AM500, 375 KW D.E.R.D.S shearers with face equipment supplied by Gullick Dobson and Dowty Meco. As the mine progressed, Joy 4LS shearers with Joy face equipment replaced the original equipment on the faces.

Stanley Main Seam Drifts.

Stanley Main Drifts showing Pit Bottom area, West and East developments of the mine.

Stanley Main Drifts when completed.

During late 1997 a series of canteen meetings with the staff were called at Riccall Mine. An  announcement was made that Whitemoor Mine and Riccall Mine were to become a combined mine and that Whitemoor was to be closed in 1998 when the last face was worked out. We were also told by the manager that Riccall Mine would produce coal for seven more years if we were lucky. Riccall men were told that they had options to either stay at Riccall Mine until closure, apply for redundancy, transfer to Wistow Mine or go to Whitemoor Mine to work the last face, which was H635s and then be redundant. These options gave the chance for any Whitemoor men to transfer to Riccall.

Rumours were rife from 1992 that the Selby Coalfield was under threat of closure due to diminishing coal contracts with the two newly privatised energy generators but to be actually told was a surprise as we had achieved exceptional production figures for many years. The announcement was also made that Riccall Mine was to develop drifts up into the 2.5 m thick Stanley Main seam for the last few years of production which was another big suprise as the Selby Coalfield had planning permission for the Barnsley Seam only.

The application for planning permission to work the seam was presented to North Yorkshire County Council in mid 1998 and was passed in July 1998 without major objections. The permission was to mine 9 million tonnes of Stanley Main Coal. Permission was also granted in 1999 to tip the waste from the Stanley Main Drift developments at the Gascoigne Wood tipping site.    

The Stanley Main Drifts junctions were 250m from the pit bottoms in the North Intake and North Return roadways. Skanska were chosen as the contractors for the work to be carried out. The first drift to start was the Intake which started development in early 1999. The junction was created with a Boart Multi Drill Rig using boring and firing. The drift progressed on an upward North East incline at 1 in 16.  

When the Intake Drift had reached 70m a junction was created. The Boart Drill rig then turned to the East and drove an 80m heading at 1 in 23 on an uphill incline. The junction for the Return Drift was created in August 1999 and the Boart Drill rig then drove back South West at 1 in 20 downhill to create the circuit to the North Return which was completed in early 2000

The Intake Drift was developed with a Paurat Titan E134b Roadheader using heavy duty arch supports. 

The development of the Intake Drift from the cross slit started in May 1999 and drove at an incline of 1 in 12 uphill. It passed through the Dull Seam, Kent Thick seams and the Kents Thin Seam reaching the Stanley Main Seam in late Dec 1999.

The Return Drift was started in September 1999 and was driven by a smaller Paurat Titan E169. The heading progressed well at 1 in 20 on an uphill incline and reached the Stanley Main Seam in April 2000. When the junctions for the Stanley Main Intake and Return Lateral headings were made a roadway was driven west from the Intake lateral junction back towards the North Conveyor Road. A borehole was made for the Stanley Main coal to load onto the North Steel Cord Conveyor from the Stanley Main level.

The Paurat Titan E134b and E169b Roadheaders were made under licence by Dowty. Below are a couple of information sheets for the machines very similar to the machines used in the Stanley Main Drift headings.

 

Information for the post was provided by Phil Wright, Ian Steele, ( Steely ) who worked for Skanska in the Stanley Main Drifts and Kevin Grant, S.C.E. at Riccall Mine.

Gascoigne Wood Washery Plant.

During the early stages of development and planning of the Selby Coalfield, a huge project was undertaken to prove the available seams were workable. Nearly 90 boreholes and 345 in seam seismic surveys were carried out to prove the available coal. The planning permission was based on the findings which proved 2 billion tonnes of available reserves of which 600 million tonnes were the Barnsley Seam. The comment made at this stage of planning was the Barnsley Seam is clean coal, good enough to send straight to the power station and that the 600 million tonnes were relatively dirt free reserves.

Gascoigne Wood mine was designed to have no coal preparation facilities or tipping space but due to underground faulting, dinting, sinking of cross measure drift and face conditions across the complex the amount of dirt in the coal was becoming a problem. The decision was made in the early 1990s to build a huge screening and coal preparation plant on site. The existing covered coal storage facility was chosen to house all the equipment needed to build the new preparation plant.

The coal storage was redirected to an adjacent open area that could store up to 400,000 tonnes of coal; which is over two months’ production. The new stocking ground had coal stackers with boom conveyors capable of raising, lowering and rotating to ensure the coal was stacked efficiently. Each stacker could process around 3,500 tonnes of coal per hour with the whole system mounted on a transportable carriage rather like an overhead crane. The coal was reclaimed from the storage area, to be processed, using a rotating barrel incorporating a reclaiming bucket. This system operated at 1500 tonnes per hour and sent the coal to the preparation plant inside the old storage area.

The Original Covered Coal Storage Area

The Boom Stacker and Reclaimer System

Gascoigne Wood site showing coal preparation facilities.

The coal preparation plant contained inside the old storage consisted of 4 screens manufactured by Don Valley Engineering. These were known by their nickname ‘banana screens’ due to their curved design. Two screens were used in each route from the drifts and were capable of processing 900 tonnes per hour at a size of 1 inch. The coal was then blended with smaller coal from the 16x flip flow IFE screens. The coal washing system was 6x Parnaby barrel type natural medium with a capacity of 1200 tonnes per hour. The smaller coal was washed using cyclones to deal with the slurry filtration.

Click on the link to show the plant in October 2004 during the last days when the only production in the complex was from SM 504s at Riccall Mine. It gives you an idea how vast and complex the coal preparation plant was.

Due to the site not having planning permission to tip waste and a ban on road haulage transportation, the dirt from the preparation plant was sent to Allerton Bywater Colliery for tipping via railway. Liquid slurry was sent to Wheldale Colliery via an overland pipeline for disposal in the shafts. Coarse waste was sent via railway to Welbeck Site, near Normanton to be used for landfill and reclamation.

When the closure of Allerton Bywater Colliery was announced in March 1992 the need for tipping space at Gascoigne Wood site became a major priority. Planning permission was applied for in July 1993. A full review was carried out on the 133.8 hectare farm land site. At the time, 98% of the land was used for agricultural production with grade 3b moderate soil types covering 79% of the site. Planning was granted in late 1993 to start a 340 acre tip to the East of the mine site. The tip was started in 1994 with precise planning and environmental conditions imposed. As the tip progressed in a modular manner, called cells, continuous restoration took place. 110,000 trees were planted in an 10 metre wide border around the site in the first year with a further 50,000 to be planted as the restoration of the site progressed. Topsoil was added to the site on completed sections within 18 months of completion of each phase.

Gascoigne Wood tip looking south.

Gascoigne Wood tip looking south east.

Gascoigne Wood tip looking north west.

The original planning permission was for an area of 340 acres. Further planning permission was added as the tip was completed with a further extension added to the north and east of the existing one. In 1999 a further planning permission was granted to allow the tipping of waste from the Stanley Main Drifts being developed at Riccall Mine.  

Due to the very high standard of restoration work carried out on the site, Gascoigne Wood Mine was awarded the accolade of ISO 14001, the first mine in Europe to be awarded the International Environmental Standard.

The tip is not recognisable as a Colliery tip now, with vast areas of grass and trees. If you enter ‘Gascoigne Wood’ into Google Earth you can see the extent and standard of the remediation work carried out.

Bibliography

DOWNES, E. (2016). YORKSHIRE COLLIERIES 1947-1994.

Photographs kindly provided by N. Rowley.

List of coal faces at North Selby Mine.

North Selby Mine.

The faces worked at North Selby Mine at the North and South West of the mine.

As you can see from the plan, the faces marked were taken when North Selby was a stand alone mine before the merger with Stillingfleet Mine. Nine faces were mined at North Selby in this area. Four coal faces are shown, but not marked, as they were developed at a later date working from Stillingfleet Mine.

The faces taken at North Selby Mine at the South East of the mine.

As you can see from the plan seven faces were mined at North Selby in this area. One face is unmarked as it was worked from Stillingfleet Mine at a later date. This area of the mine was very hot with heat exhaustion being a major problem due to the working depth of 1100m.

North Selby Mine and Stillingfleet Mine merged in July 1997 but in its short life of 7 years, 16 coal faces were mined. The first face started in November 1990 at North Selby which was H801s.

North Selby H801s face.

It was the first face in the country to have a remote face support pump system and supplied the face at 4,500 psi. North Selby Mine was also the first mine in the UK to both develop and use load centres instead of individual gate end boxes to supply the coalface equipment.

On the nightshift of 6th December 1992, North Selby H903s coalface, using an AM 500 DERDS coal cutter sheared 5055m of coal (3.14 miles). This was a European record and along with Thoresby Mine the first time 3 miles of cutting was achieved in a single shift.

The face headings were developed using Lee Norse LN800 Continuous miner. The lateral roadways were developed using Dosco LH 1300 roadheader machines with a Dosco MK3 roadheader driving the west connection to Stillingfleet Mine. As happened at Whitemoor Mine, the heading developments were taken by mining contractors with British Coal/ RJB Mining teams working the coalfaces from 1993.

The faces were equipped with Anderson Strathclyde 375 kw AM500 DERDS or 375kw Joy 4LS DERDS shearers. The face equipment was initially Gullick Dobson and Dowty Meco. Due to mergers of mining equipment suppliers in 1994, Longwall International equipment was used.

Memories of Stillingfleet Mine.

I have been in contact with Martin Thomson who moved from Ledston Luck Colliery to Stillingfleet Mine. He kindly gave me his memories of working at Stillingfleet from 1986. It is always great to hear people’s memories.

Martin remembers the following, but is happy to be corrected –

The mine was split into east and west sides from first development – I started there in 1986 transferred from Ledston Luck as ‘elsewhere below ground’ worker – at that time the main laterals were still being driven and the ‘run of mine’ was sent by conveyor to horizontal bunker in the pit bottom where it was loaded into ~2t mine cars and lifted up the downcast shaft – at the pit top the coal was taken by wagon for sale and the waste used to build the screening etc – B1 was the first longwall on west side – 200m long 2.6m thick Barnsley seam – gates were in region of 1500m – all chocks on the face run were controlled by 3 man team with two machine men DERDS – gate ends had a separate 2 men teams and then a stage loader man – additional team members were 2 mechanical and 1 electrical and deputy – this first face was a production record breaker – the output per manshift was enormous (can’t remember the numbers I’m afraid) and the management team were excited to think all the faces would be equally productive – C1 was the second face this time on the east side -the equipment /mechanics were the same as B1 but the geology was different and although successful, never really matched the production rates of B1, and this continued on east side for second third and fourth faces with some very difficulty faulting creating lots of cavities to contend with (unfortunately for me, these were the faces I did my face training and face work on) – many ‘happy’ hours were spent drilling great lumps of immovable sandstone that dropped onto the armoured face conveyor, ready for the shotfirer and his explosives! and then even more hours putting up shuttering with timber and plastic sheets in order to pump the void above the chocks with a cementitious material which when set, could later be sheared through thus creating a new stable roof – the laterals were laid with rails which incorporated ‘rack-a-track’ to enable the diesel locomotives to drive their pinion ‘cog’ along, thus enabling them to transport loads up/down a general inclination east to west – the laterals followed the Barnsley seam which dipped eastward (can’t remember the gradient ~1in8? with faulting in some parts making it steeper) – I spent a few months on diesel loco transport and can remember they really struggled with frequent overheating problems – later, the mine used all electric battery powered Bobo locomotives with rubber tyre wheels which were successful, reliable, very capable (including the transport of powered supports) cleaner and quieter – later still, the mine used diesel powered FSV which were flexible, powerful but noisy and dirty and were limited to drivage gates – the floor heave outbye created lots of problems with constant need for dinting – later still, the mine used manriding conveyors to try to speed up journey times for face teams – the mine developed northward and was successful with a number of shorter length face/gates – the south side did not have face units (at least not while I was there up to ~1996) as it was a lateral that the main conveyor was installed within connecting to the 2000t capacity vertical staple bunker down to a lower lateral which then used a vertical borehole down to Gascoigne Wood drift mine tunnels and the Anderson Strathclyde steel cord belt (south tunnel?) and the cable belt (north tunnel?) 

Many thanks to Martin for giving me the above information.