Welcome

My name is Chris and I have worked in mining all my life from the age of sixteen. I grew up in a village surrounded by pits in the 60s, with family members who all worked in the local coal mines, New Monckton Colliery and Royston Drift Mine.
I am the sixth generation of miners in my family going back to mining in the Black Country and Catcliffe so I suppose you could say mining is in my blood. I was always interested in mining history and my mining heritage from early in my career. Around the same time I had the urge to research my family history as I was told miners were in my family as long as anyone could remember.


I am obviously the last generation of coal miners due to the sad closure and demise of the industry so this gave me the idea of researching the Selby Complex, the last big mining project undertaken in this country. I worked at Riccall Mine, one of the Selby pits, which was a huge advantage to starting my research. It is my intention to research all aspects of this marvel of mining and civil engineering and will include the history, concept, geology, mines rescue provision, planning, including the public inquiry, design and social impact that the Selby Superpit had on the 110 square miles of villages and on the town of Selby.

All information and memories are correct to the best of my knowledge. Sorry if the information about Riccall Mine seems more in depth but that is where I worked as a coalface and H.V. installation electrician so most of the information is from my own experiences or friends I worked with. Anyone who has further information about any of the Selby Mines please let me know and I will edit accordingly. 


So … let’s get started.

My grateful thanks to Eddie Downs for his permission to reference his book ‘Yorkshire Collieries 1947 – 1994’ which has proven to be an invaluable resource and an inspiration for this blog.
Downes, W., n.d. Yorkshire Collieries, 1947-1994.

Photographs of Dosco tunnelling machinery kindly provided by my mate Rich Teasdale ( Rich Tea ) who worked as a field service engineer for Dosco Mining Machinery.

The twelve million tonnes year 1993/1994

The Selby Coalfield was designed and planned to produce 10 million tonnes per annum when in full production from the five pits. This figure meant that each pit had to maintain 40,000 every single week which was no mean feat. The first year this figure was exceeded was in 1992/1993 when the complex produced 10,806,000 tonnes of coal in the financial year ending March 1993. Wistow Mine produced 2,938,000, which included a European record of 173,156 in one week, Riccall Mine 2,600,000, Stillingfleet Mine 1,506,000, North Selby Mine 2,024,000 and Whitemoor Mine 1,801,000 tonnes of coal. These figures were an outstanding achievement with records for production and tunnelling broken on a regular basis. Twenty two longwall, two shortwall and 13 single entry faces were worked in this financial year.

As the coal production was ramping up, face development rates had to improve which was achieved by the introduction of rockbolting throughout the complex. Nearly 59,500m of tunnels were developed in the financial year 1992 /1993 to open up the faces needed to mine over 10,800,000 tonnes of coal production. All in all a good year for the Selby Coalfield.

In the year 1993/1994, the complex was set up for another record year and produced 12,091,000 tonnes of coal. In this year, Riccall Mine produced a European record of 3,060,000, achieving an average production of nearly 60,000 tonnes every week.

During the year, Riccall Mine worked three faces at the west of the mine. H474s, H475s and H476s were all 250m in length and retreated over 2000m. Three faces were worked at the south west of the mine. H430s, H432s and H433s  were 230m in length and retreated over 1500m. Three faces at the east of the mine, H501s, H502s and H503s were all 250m in length and retreated 1800m. A total of six face to face transfers of equipment were completed during this twelve month period. This was a very busy year of seven days a week and twelve hours shifts for the teams, including the electrical installation team of which I was a member.

Wistow Mine produced 2,960,000 tonnes, Stillingfleet Mine produced 1,952,000 tonnes, Whitemoor Mine produced 2,221,100 tonnes and North Selby Mine produced 1,853,000 tonnes of coal. Twenty six longwall, two shortwall and ten single entry faces were worked and over 58,000 metres of tunnels were developed during this year.

This was the final year that British Coal managed the coal industry with RJB Mining taking over in Jan 1995.

Roof bolting

Since coal mining began the roof in a mine was supported to ensure the rock strata over our heads didn’t collapse onto our heads. This was initially achieved by setting wooden props from the floor to the roof to stop the strata moving, fracturing and collapsing, often with catastrophic results. For hundreds of years this simple system was used often in conjunction with wooden bars set over the props to span roadways.

Prop and bar

Steel support joist, known as girders or arches were introduced due to their greater inherent strength. Many types of mining arches, square section girders and joists were developed for different seams, conditions, weight, speed of setting and cost. The roof above the girders were usually covered with corrugated steels sheets to stop rock falling onto the men. The Selby Coalfield, which worked the gassy Barnsley seam was slightly different in that open steel mesh was the only coverings allowed above the supports. This ensured  full access to the roadway and ensured it could tested for methane without hidden pockets behind steel sheeting.

Gascoigne Wood North Spine tunnel

Gascoigne Wood South Spine tunnel

Steel arches in H504s T/G at Riccall Mine

Using roof bolting as a primary support system for strata control was developed in the U.S. during the 1940s and into the 1950s. They were initially used to replace wooden props and bars used in the American mines and was thought as a more effective and safer system of roadway support. Roof bolting as a secondary support system to supplement flat top girders was used with great success at Hartley Bank Colliery at Netherton, Wakefield as early as 1953 on both headings and longwall roadways.

Legislation stated that rockbolts may only be used as a principal support system in a coal mine if the H.S.E. has granted an exemption from the requirements to set recognised authorized supports. An exemption was only given if the roofbolting system was tested and proven at each individual mine to be safe and a geotechnical assessment and site investigation was carried out by a suitably qualified and competent person.

Below are the requirements to be taken into account when carrying out the site investigation;

Geology: including the strata section, rock properties, faults, cleat, parting planes, presence of water or any substance likely to flow, borehole information and gradients. All factors need to be correlated relative to the mining horizon;

Stress: the direction and magnitude of the stress field components for pre mining, mining induced conditions and interaction;

Pillar design and effects: the assessment needs to include drawings and diagrams to illustrate potential risk areas;

Environmental effects: the effects of ambient temperature, mine water and associated impurities.

Bond strength: measured by short encapsulation pull tests using the proposed rockbolting materials and components. The tests need to be carried out for all major roof horizon changes within the length of the proposed rockbolt and the effects of wet flushing or alternative dust control system on the bond strength determined.

Standup time: dilation related to distance from the face.

Information taken from H.S.E. guidance on the use of rockbolts to support roadways in mines.

In the early 1980s Allerton Bywater Colliery used roof bolts in the Middleton Little seam on 56Bs district, as part of a trial, when mining small panels of remnant coal referred to as finger panels and proved a great success. A consequence of the trial and the technical information gained, they became the recognised experts and leaders of roof bolting in the U.K. The introduction of totally rockbolted supports was introduced on 56As which was the next panel to be worked.

This system of roof support was used in the Selby Coalfield in early 1986 when HO2DRs, one of the first two faces at Riccall Mine were developed. D2s tailgate was a trial using rockbolts in conjunction with flat profile arches using a Lee Norse LN800 1TT continuous miner.

Lee Norse LN800 1TT continuous miner.

Rockbolting was introduced as primary supports at Wistow Mine in 1990 due to difficulties with the geology at the mine.

During the development of the Selby Coalfield new technologies were introduced very quickly as they became available. Roof Bolting was one of these system to revolutionise the speed, cost and safety of roadway developments initially on coal face access roadways. As the technology and monitoring was improved, main lateral roadways and face support salvages, which were previously supported by girders, became supported by roof bolts and cable bolts.

Roofbolting used for face support salvage at Riccall Mine.

Stopping roof collapses in a coal mine was always seen as spanning the gap created when coal or rock was removed by setting a support in this void therefore holding the roof up from below. Roof bolting and cable bolting are a completely different way of looking at this problem. Roof bolting uses the inherent strength of the strata situated above the roadway as a support. A hole is drilled to specified length and diameter into strata which has the required strength passing through the weaker layers of strata. Resin adhesive capsules are entered into the drilled hole and a steel bolt is then inserted. When the bolt is rotated and forced into the hole, by action of the rock drill, the resin capsules and hardening agent are mixed and fill the gap between the bolt and strata, known as the annulus. This creates a solid bond between the bolt and the surrounding strata. When the bolt is fully entered the nut is tightened onto a flat plate against the roof and tensions the bolt which holds the strata together. If this process is carried out quickly after the roof is exposed during mining process, the bolts and resin hold the strata together ensuring no bed separation of the rock and no roof falls occur.

The roof bolts used at Riccall Mine were threaded high tensile steel with a diameter of 22mm and were 2.4 metres in length. The roof bolts were installed into a 27mm drilled holes using two part high strength polyester resin. The resin capsules used were colour coded red for quick setting and green for slow setting. Two slow and one quick setting capsules were inserted into the holes and the bolt was drilled into the hole using a compressed air drill known as a ‘Gopher’. The drilling action and the sharp wedge tip of the bolts punctured and mixed the resin capsules which created a very powerful bond between the bolt and the surrounding strata. Once the bolt and resin are set to an adequate strength the 24mm nut is tightened on to a conical insert and plate up to the roof.

This system of rockbolting became standard throughout the Selby Coalfield and was used in conjunction with either W bars or flat straps with 1m spacing holes across the section of roadway. Each support was set at a 1.2m spacing. Steel or plastic mesh was used as part of the support.

To apply for an exemption to use fully rockbolted roadways many test were carried out. Roof / Strata movement measurement, rockbolt strength tests, rockbolt pull test and strain gauge tests which were all designed to check the performance of the rockbolt /resin/ rock system. Below are the areas of a mine where rockbolts may provide principle support;

Development headings and junctions;
Coal face development drivages;
Retreat district gate roads including the face ‘Tee’ junction;
Room and pillar coal production districts;
Special purpose drivages, eg to house equipment.


Four examples of places which may not be suitable are:
Goaf scours;
Gate roads serving advancing faces;
Cross measures drifts;
Headings formed by shotfiring off the solid.

Once a safe system has been designed and tested through the four stages of acceptance, the exemption to use rockbolts as a primary support is granted. The Mine Manager and Rockbolting Co-ordinator were required to instigate a system of routine monitoring and recording called the’ Scheme for the routine monitoring of roadways’

The system of monitoring included visual indentification of roof movement called dual height telltales.

Dual height telltale showing general assembly

The telltales were installed in the rockbolted roadway at intervals not greater than 20m apart. They were drilled to a height of at least twice the height of the rockbolts and basically monitored the movement of the strata above the roadway. Two spring loaded wires were anchored into the strata above the roadway and were given a copper tube set at the roof height as a reference point. If the strata moves downward the telltale will move upward and gives an indication of movement in millimetres. The telltales are monitored on a shift basis and recorded by the district official. Any movement is recorded. Excessive movement (25mm) must be reported to the senior official and action taken to remediate the movement should be carried out quickly.


Multiwire-extensometers were used and acted in a similiar manner to dual height telltales. This system used a four wire system set at four levels in the strata in a 7m hole and were set at 200m intervals in a roadway. This system is recorded by suitably trained people and could be tested manually or by remote electronic systems and was part of the ongoing roadway monitoring system.

Multiwire Extensometer

Information taken from H.S.E. guidance on the use of rockbolts to support roadways in mines.

Fully rockbolted headings became very common in face developments in the early 1990s, as different types of continuous miners which were ideal for rectangular section roadways were introduced throughout the Selby Coalfield. BJD(Jeffrey) Heliminers were used at Wistow and Stillingfleet Mine’s. Whitemoor Mine introduced Joy CM12s with North Selby and Riccall Mine’s used Lee Norse LN800 machines.

Fully rockbolted headings were introduced at Riccall Mine in July 1991 on H474s and June 1992 on H430s. During the H430s face development in mid 1992, the teams set a European record of 180m of development in a week using a Lee Norse LN800 continuous miner using the fully roofbolted system. This record was surpassed many times at various mines throughout the complex as the system was perfected.

H473s tailgate showing rockbolted heading with arches as primary support

H474s tailgate showing fully rockbolted heading and steel mesh

Stanley Main SM501s tailgate showing roofbolting and plastic side meshing. Glenn Bryan is carrying out methane boring using an EDECO mobile drill rig( Moonbuggy) in the photo.

When a roof support rockbolt is used for lifting or slinging the load must not be greater than 1 tonne.

If bolts are needed for lifting of greater loads, specially installed bolts called anchor bolts (we called them spot bolts at Riccall Mine) along with suitable colour coded lifting shackles should be used. They must be identified as lifting bolts with safe working loads shown.

Ron Bruce’s memories of the Royal Visit

The Royal Visit on 7th December 1989.

In late 1989 Queen Elizabeth and the Duke of Edinburgh were due to officially open the Selby Coalfield. As part of the royal visit they were to visit Riccall Mine and go underground onto H443s coalface. Changing facilities of a very high standard were expected for the royal visit and as the existing pit head baths were not quite up to royal standards a new facility was built. Due to the great expense of building a shower facility for one purpose the building was to have a second life as a sports pavilion and rugby pitch. A three month window was given to complete the new changing and showering area with totally separate areas for Queen Elizabeth and Prince Phillip. Ron Bruce and the estates department had the building designed, drawings made and land made available adjacent to the main building at the mine. Needless to say it was completed on time. Sadly the Queen did not attend due to illness. The building was eventually used as a weight training gym, changing area and football pitch for the Riccall Miners.

Thank you to Ron for his memories of the event. It’s always good to speak with experts who contributed greatly to this amazing project and my sincere thanks go to Ron Bruce who contributed the information in this post. Without people like Ron being happy to speak with me, these memories are lost forever.

The East Coast Main Line and the Selby Coalfield.

When the Selby coalfield was planned one of the first major issues to be raised was the East Coast Main Line running over the planned workings of Riccall Mine and Stillingfleet Mine. The concern was that a mile wide section of coal would have to be left to maintain the integrity of the railway. This would have cost the N.C.B. a huge amount of time and money due to lost available reserves and having to plan a mine around the mile wide pillar of coal. Thirty coal faces would have been affected had the line not been moved. As with most mining projects a solution was found. The solution was to move the railway line to the west of the Selby Coalfield. This was called the Selby Diversion. Below is an amazing insight into this marvel of engineering within a marvel of engineering.

https://www.yorkmix.com/video-brings-york-to-london-rail-route-lost-40-years-ago-back-to-life

The new 13.79 mile Selby Diversion line was built between 1980 and 1983 to the very latest specifications. In 1983 the old line was abandoned. A new section of the A19 road  was built on the old railway from a new roundabout sited at the south of Barlby near to British Oil Cake Mills (BOCM) factory and pickle factory to the north of Riccall. This created a much needed bypass of the villages and was opened in October 1987. The abandoned railway at the north of Riccall became a part of the Trans Pennine Trail cycleway to York as part of the Sustrans scheme.

 

Plan showing old East Coast Main Line

A day at Gascoigne Wood Mine.

My thanks to Neil Rowley for providing all the information in this post. This is an article that Neil wrote for a mining history society a few years ago. He has kindly shared ‘A Day in the Life of the Selby Complex’ from when he was Deputy Manager at Gascoigne Wood Mine.

A Day in the Life of the Selby Complex

Wednesday 29th May 1996

Gascoigne Wood Mine 1996

Cable Belt Inspection

Underside of ASL conveyor showing spillage

Map 1

Approximate Location of Working Faces and Main Conveyors in May 1996 (Surface/Underground correlation is by personal estimate and is for general interest only)

Area covered by Planning permission approximately 100 square miles

Introduction

Whilst clearing out my garage recently I found a folder of reports dating from 1996. At the time I was Deputy Manager at Gascoigne Wood Mine. The reports relate to the daily operations of the Selby Coalfield as seen from the control room at Gascoigne Wood.

I feel that these reports give good insight into the day to day working of a huge industrial complex which is now quickly receding into history.

The complex was made up of five producing mines with one common coal clearance system which brought the coal to the surface at Gascoigne Wood. Map 1 is adapted from an early brochure illustration and shows the general layout. Note that this early base map shows the East Coast Main Line running north/south through the centre of the mining area.  Before coal production commenced, the railway was rerouted to the west of the production area to avoid subsidence issues, an example of the grand scale of the project.  When I commenced my employment at the complex in 1980 I was told that it should have a life of 25 years, a surprisingly accurate prediction as final closure occurred in 2005.

All coal production from the complex at this time was from the Barnsley seam and the mining system employed was mainly retreating longwall.

The Reports

Each individual mine in the complex would have its own detailed daily reports but as Gascoigne Wood was the point at which all coal came to the surface to be prepared and dispatched, the GW reports needed to contain some basic information from each of the producing mines in order to enable fair allocation back to the individual mines of tons produced.  Their operating budgets depended on it!

I chose a date of 29.5.1996 at random to illustrate the operation and sheer size of the complex. At the time the complex was owned by RJB Mining. Privatisation of the industry having taken place in late 1994.

Report 1 is the Daily Production Record for this date.

Safety was taken very seriously and reports generally commenced with this aspect.

It can be seen that there had been one minor accident at Gascoigne Wood during the day. A man had received an injury to the roof of his mouth from a sharp object.  This somewhat unusual incident would have been discussed in some detail at the Manager’s morning meeting.

Then on to the production reports.

Wistow Mine had three producing longwall faces on this date.  H92s was at the deeper end of the Wistow take and was of conventional length.  H74s was shallower and hence shorter to control subsidence to within agreed limits. H134s was very short.  Hence H92 could achieve 15.8 strips in the day, 74 managed 17.4 but 134 amassed 30 very short strips.

Riccall Mine had two faces. H478s was successfully mining an area to the south of Riccall village. H504s had just come into production a couple of weeks earlier. This may account for the lower than expected number of strips. It was located to the east of the shafts under Skipwith common.

Stillingfleet Mine had two faces both performing well. H302s was mining the area to the west of Escrick Brick Works. H266s was mining the area to the South of Naburn Lock.

Whitemoor Mine was operating two faces. H641s was to the south of the Whitemoor shaft pillar and H632s was north of North Duffield village. The low number of strips combined with the high ash content that we see from other reports suggests that the faces were in faulted areas and suffering from roof control problems. Depth below the surface of these workings was approximately 900m.

North Selby Mine was the deepest of the Selby mines and was producing from two faces. H906s was to the East of the shafts working at a depth of over 1000m. H856s was near Deighton village.  Both seem to have been performing pretty well on this date. As a rough estimate I would say that the coal from H906s face had an underground journey of over 20Km through the conveyor system of the complex before it reached the surface at Gascoigne Wood.

Total mineral transported to the surface via the Gascoigne Wood conveyors on this day was well over 60,000 tonnes. This was pretty much a normal daily total for this period.

Total saleable coal leaving in the trains was 50,641 tonnes

1996 was the 5th successive year where annual saleable output exceeded 10 million tonnes. Profit for the complex in 1996 was reported to be £24.464 million.

Sadly the good times were coming to an end and production was to gradually fall away in the coming years as the better mining areas became worked out.

Report 1

Report 2 –Delay analysis for coal clearance systems 29.05.96

The two spine tunnels coming to the surface at Gascoigne Wood each contained a different type of conveyor.

The South Spine contained the ASL – named after Anderson Strathclyde Ltd, the designer and manufacturer.  It was a 12.2 Km long steel cord conveyor running at high speed and capable of over 2000tph.

The North Spine contained the Cable Belt.  The cable belt consisted of a very flat profile carrying surface resting on two steel cables.  It was slightly earlier technology than the ASL  and the flat profile gave rise to quite a lot of spillage, especially if one of the pulleys supporting the cables had a bearing failure, in which case the vibration caused the coal to be shaken off the conveyor.  It normally ran at 1000tph but when demand for coal clearance was not so great, it was shut down and the ASL was used alone.

South Spine Delays

The first group of delays with the prefix ROM (Run of Mine) relate to stoppages of surface conveyors downstream of the ASL which in turn cause the stoppage of the main spine conveyors.  CO7c was a common offender in this respect. It was the oversize conveyor feeding the barrel washer infeed stockpile and prone to large pieces of stone or timber causing misalignment or blocked chute.

Many of the other delays refer to belt torn protection being operated at various locations. B2 being Wistow bunker, B6 Stillingfleet Bunker etc.  The belt torn probe was a wire stretched from side to side beneath the belt.  If a piece of rubber was trailing from the belt then it would hit the wire and stop the conveyor.  The conveyor was running at high speed so would take a little while to stop and the bunker operator would have some distance to walk to find the offending piece and cut it off.

Rollers were changed by a belt patrol team who did their inspection from a train travelling alongside the conveyor. The inspector was pretty much lying down in the vehicle so that he could see the underside of the conveyor.

Later in the evening problems start to occur with a steel cord coming out of the belt.  This would need to have been chopped off and its position within the 24Km of belting noted for later vulcanized repair.

North Spine Delays

This conveyor was affected by the surface conveyor stoppages in the same way as the South.

The report shows several  pulley changes and a rope off pulleys incident which were speedily dealt with. The numbers following the entry refer to the stand number on the conveyor structure. The last entry of “portal bubble trip” refers to a detector which was looking to ensure that the rubber belt was lying flat down on the cables.  This consisted of a wire stretched at right angles above the carrying surface which would stop the conveyor if it was hit by anything.  The trip wire had probably been hit by a large lump of coal on the conveyor and did not indicate a problem with the conveyor belting itself.

Report 2

Report 3 Gascoigne Wood  Manager’s Morning Report

This is the summary of the day’s activities that landed on the Manager’s desk the following morning and a summary would be reported on to the Group Director.

The information in the first section predominantly comes from the Westerland feeders delivering onto the spine conveyors from each of the bunkers that the producing mines fed into.  The feeders were wide slow flat conveyors of known bed depth and controllable speed which gave a pretty accurate record of tonnage throughput.  Mounted over each feeder was a sensor picking up natural gamma radiation from the material passing beneath. Shale gives off more gamma than coal and so with careful calibration the percentage ash could be determined.

Coal from Whitemoor had to pass through Riccall Mine before it reached the spine conveyors and similarly North Selby coal had to pass through Stillingfleet. The ash monitors and weighers for these mines were located on the boundary between the mines and so were not under neutral control.  This was often a source of much dispute between the mine managers, each seeking to gain maximum tons and hence income for their mine.

As a check on these ash measurements the GW Deputy Manager regularly visited the individual mines to do a rough face survey, measuring thickness of coal cut, amount of stone falling from the roof and thickness of floor dirt taken.  This was a part of the job which I always found very interesting.  These findings could then be used to adjust the ash content should it be necessary.

Belt weighers can vary greatly in accuracy so tonnage arriving at surface was adjusted to bring it in line with known weight dispatched over the certified weighers on the railway and changes in stock levels.

To reduce ash levels to those acceptable to the power stations a proportion of the coal needed to be washed and then re mixed back in.  At this time there were two washing plants operating – The barrel washers which treated the larger material and the dense medium cyclone and spiral plant which treated the medium sizes.  The undersize went straight through to form the basis of the blend. Tonnages into each process can be seen on the sheet.

The ash level to the power stations was running at 17.1% and we would be looking to bring this down a little by the quarter end.  The customer paid on calorific value rather than per ton so a slightly high ash content would result in a lower return per ton.  A factor critical to the customer was the handleability of the product. The last thing they wanted was coal sticking in the wagons and holding up the discharge of trains. Poor handleability was related to some extent by moisture content, which on this day was nicely in spec at 10.7, but could be more significantly affected by the MRF content.

MRF stands for Multi Roll Filtercake.  This was produced by squeezing the moisture out of the finer material in the barrel washer plant.  MRF had a good coal content but also contained fine clay particles which could cause handleability problems.  It was obviously in everyone’s interest to send as little of this material to the tip as possible but blending it into the product had to be done cautiously to avoid sticky trains.  A very fine balancing act.

A small amount of house coal was also being produced.

Three trains of stone left site to be disposed with domestic waste in Wakefield, the rest of the discard was disposed of in a very carefully constructed tip facility on site, with MRF cake enclosed in cells of coarser material. HAU stands for High Ash Undersize, of which 183,000 tons were on stock waiting to be blended back into the product when ash content from the mine reduced.

Report 3

 Conclusion

This has been a very brief view of the activities taking place on this fairly typical day in 1996.  The sheer size of the operation is clear to see with over 60,000 tonnes of mineral being brought to the surface and over 50,000 tonnes being dispatched to power stations throughout the country in a single day.  

As with many mining projects, the geology of the area proved to be not as straightforward as anticipated in the early planning stages causing production to slow in later years.  The basic design of the complex required high throughput to achieve cost efficiency and falling tonnages resulted in a rising cost per ton, leading to eventual closure in 2005.

Hopefully these reports give a glimpse of the coalfield operating at its designed output level, as it did throughout much of the 1990s, and give some indication of the tremendous engineering achievements and degree of human endeavour that made up this very bold project. 

***

Again, many thanks to Neil Rowley who was Deputy Manager at Gascoigne Wood Mine and who provided the information and memories in this post.

Royal visit to Riccall Mine

Video and memories of the day

The official opening of the Selby Coalfield took place on December 7th 1989. Queen Elizabeth and Prince Phillip were due to visit Riccall and visit H443s, a working coal face at the mine. On the day however, HRH The Queen was ill and HRH Prince Phillip attended alone.

The visit was seen as a recognition of all the hard work that went in to the whole project. His Royal Highness was introduced to British Coal Directors and the Mine Manager, the late Stuart Sumnall. He was shown into the concourse where he met with local school children and members of the mining staff. He was taken into the lamp room, had a tour of the surface, and then went underground. Afterwards there was hospitality and speeches with officials, miners and their families. A successful event, and a lasting memory and endorsement of the success of the mine.

The British Film Institute has kindly allowed me to show this video of the Royal Visit on my blog and I am sure many of you will be very interested to see this.

Many thanks to the British Film Institute for their kind permission to use this video and for their agreement for me to show this in four parts because of the upload limitations of this site.

Part 1
Part 2
Part 3
Part 4

Copyright BFI / Courtesy of the BFI National Archive

My memories of the day;

The face was prepared with cover plates fitted over the pan side cable and hose brackets, to ensure that no accidents happened during the visit.

A roof bolting demonstration was given by Dennis Nichols and an Anderson Strathclyde AM500 shearer demonstration was given by Terry Armitage and Phil Matthews. The  deputy in charge of the district for the visit was Snowy Varley. During the visit, only a skeleton staff were allowed underground. I remember that three electricians, from our team, were at strategic points to ensure electrical problems were quickly dealt with, one being in the pit bottom substation, one at the main gate end substation and myself as the  electrician in charge of the face.

I was waiting in the tailgate when I got a call to say that the face A.F.C. would not start. A very concerned and agitated undermanager appeared in the tailgate to ask me to go and see what was wrong. I quickly went to the maingate to see what the problem was. A power supply fuse had blown in the BFS switchgear supplying the panzer and it would not start. I replaced the fuse quickly and thankfully the A.F.C. started. The visit went ahead as planned with no further problems.

The event was recorded in a souvenir issue of the Coal News.

and we were all given a pit check along with a Royal Visit mug to commemorate the visit.

Many thanks to my mate Ian Cawthorne who kindly  provided me with the digitised version of the original VHS video of the visit.

Ian worked at Riccall Mine as an underground fitter and chargehand.

Qualter, Hall Engineering and the Selby Coalfield: Wistow No. 1 Winder.

The second of the two winders to be installed at Wistow Mine was a tower mounted, six rope, friction winder (Koepe). This winder was installed over the downcast shaft and had a single cage with counter balance weights. The cage was designed to carry 170 men on two decks or 16 tonnes of materials. To give some idea how large the cage at Wistow Mine was, a complete Dosco Dintheader heading machine could be loaded and transported underground on the cage.

They were the largest cages in the UK and weighed nearly 24.7 tonnes.

Below is the pictorial history of the installation and commissioning of the No1 winder.   

The cage had to be manufactured and transported in two parts due to its sheer size.

The final pictures are the fitting and commissioning of the six ropes on to the 24.7 tonne cage and counterweight.

The cages on the friction winders in the Selby Coalfield were all tilting deck type. The middle section of the cage has central pivot points on both sides of the deck. Two hydraulic rams are mounted to the lower and middle deck and when operated the middle section is tilted and the load is held at an angle in the cage. This allows loads of up to 8.2 metres long. This system allowed the long, square section girder work, used in the underground bunker areas to be transported safely within the cage without the need to sling underneath the cage as used at many collieries.

Many thanks to Lisa Butterworth, Marketing Manager and George Wild, Company Secretary at Qualter, Hall and Co Limited for their time and for the use of the amazing photographs from their archive.

Selby before the Miners Strike in 1984.

Below is a very interesting historical film called ‘Selby: the saving face for coal’ about the perception of the future of the industry in 1984 by the NCB and the NUM. In the film the Selby Coalfield is referred to as a big part of the future of the industry but the actual truth of what happened to Selby, and the rest of the UK mining industry, preceding the year long strike, was very different.

At the time, Wistow was the only mine producing coal in the complex and the film refers to the initial problems encountered on A1s, the first working face and the subsequent replanning of the pit. 

Selby: the saving face for coal

Qualter, Hall Engineering and the Selby Coalfield: Wistow No. 2 Winder.

Qualter, Hall and Co Ltd is a very famous and world renowned heavy and mining engineering company. When the Selby Coalfield project was started a huge amount of mining engineering expertise was needed to develop the coalfield. The five mines in the complex needed two winders per site to supply equipment and transport the men underground. Mine car handling plants to clear the coal and rock produced during the development phase were also needed at each mine to enable the underground developments to take place before the final connection to Gascoigne Wood Mine was completed. At this point all production came to the surface via the two huge trunk conveyors. Qualter, Hall was chosen to design, supply and install the new, state of the art winders and coal handling plants at each mine.

The first satellite mine to be sunk and equipment installed was Wistow Mine. This was the smallest site at only 29 acres and the shallowest mine in the Selby Coalfield. It was also the first mine to start production in July 1983.

Wistow was the only mine in the complex to use a tower mounted friction-winder (Koepe) on the No1 downcast shaft. All the other mines in the complex installed the friction winder on the No2 upcast shaft .

The winder installed on Wistow No2 upcast was a ground mounted, double parallel  drum winding engine with twin cages. Each cage would carry 60 men or 8 tonnes of material. It was the first of the two winders to be installed at Wistow Mine. This shaft was used for the mine car handling plant during early development of the mine.

Below is a pictorial history of the manufacturing and the installation of Wistow Mine No2 winder and mine car handling plant.

During the installation of the No2 headgear the two cages were manufactured and transported from the works at Barnsley onto site for installation. 

Each double deck cage weighed 4.5 tonnes  and were made of aluminium.

Once the No2 upcast shaft headgear was operational in May 1981 the protective cladding was installed to allow the building of the airlock to progress. 

With the cages installed and winder fully operational the winder was commissioned for man riding and use as part of the mine car handling plant.

During this period the surface mine car handling plant and outfeed conveyor system was installed to enable the development mineral to be processed. The double deck system, traversers, LOFCO mine car feeder chains and mine car ramming system enabled very efficient loading of empty, and disposal of full, mine cars to and from the shaft.

The underground coal clearance system to Gascoigne Wood Drift Mine was completed in January 1983 and the use of the surface mine car handling plant ceased and the equipment was removed.

Many thanks to Lisa Butterworth, Marketing Manager and George Wild, Company Secretary at Qualter, Hall and Co Limited for their time and for the use of the amazing photographs.

Memories and Artworks of Karl Jarrett.

The use of non intrinsically safe and non flameproof cameras and photographic equipment is illegal except in very controlled circumstances in UK coal mines. This is due to the occurrence of methane gas, which is an extremely explosive gas. All electrical equipment used in a mine is tested and certified for use in this environment.

Whilst working underground as a faceworker, heading man and later a deputy at Whitemoor Mine, Karl Jarrett sketched his underground environment and the jobs he worked on in his note book. You can see from the artworks below that he captured the very difficult, hot and dangerous conditions we all worked in. 

Below are the memories of Karl when he worked at Fryston Colliery and Whitemoor Mine.

I started at Fryston Colliery in 1980 aged 16. My job was supplying materials to the coal faces and headings in the Beeston seam.
In 1982, aged 18, I completed my coalface training. I then became part of a heading team developing the underground roadways.

Artwork of a miner by Karl Jarrett, showing a man working underground changing a shearer cable at Fryston Colliery.

Changing shearer cable on 33s. 1982.

Artwork of a group of miners by Karl Jarrett, them at snap time underground at Fryston Colliery.

Fryston Colliery snap time stopping the belts. 1982.

Artwork of miners by Karl Jarrett, showing them working at the face of a heading underground at Fryston Colliery.

Holman Borer, Fryston Colliery 86s heading. 1982.

Artwork of miners by Karl Jarrett, showing them working at the face of a heading underground at Fryston Colliery.

Making stub heading for area borers in 76s Tailgate. Fryston Colliery. 1983.

During 1984-85 I was on strike with the N.U.M. and went picketing almost every day.

Artwork of miners being attacked by police at Fryston Colliery during the miners' strike of 1984.

Our brave Boys in Blue. 1984.

In 1985 when the year long strike finished we all marched back to work behind the Fryston Branch Union Banner.
In the same year the Beeston seam closed due to a fire on 76s face. Due to the loss of the Beeston seam I started working in an advanced heading on 25s coalface in the Flockton seam.

Artwork of miner by Karl Jarrett, showing man carrying a cruciform arch at Fryston Colliery.

Carrying a Cruciform on 25s. 1985.

In 1986 Fryston Colliery closed and I was transferred to Gascoigne Wood on loan from Whitemoor Mine for 8 weeks.

When I transferred to Whitemoor Mine in 1986 I became a roadheader machine driver working as part of a heading team.

Artwork of miner by Karl Jarrett, showing man on road header machine at Whitemoor Mine.

Holing through to Riccall Mine. 1986.

Tank slit at Whitemoor Mine. 1986.

Artwork of miner by Karl Jarrett, showing man on road header machine at Whitemoor Mine.

Whitemoor/ Riccall Mine Connection. 1987.

Artwork of three miners by Karl Jarrett, carrying a pump at Whitemoor Mine.

Dalek at Riccall Bunker. 1988.

Artwork of three miners by Karl Jarrett, dragging a beam girder at Whitemoor Mine.

Whitemoor dragging beam. 1988.

In 1988 I completed my Rescue Training and became a part time Mines Rescue Brigadesman at Whitemoor Mine.
In 1990 I started working on coal faces as a Shearer driver.

Artwork of miner by Karl Jarrett, salvaging props from the face at Whitemoor Mine.

Whitemoor Mine H624s face  salvaging hydraulic props. 1992.

Artwork of miner by Karl Jarrett, working in the tailgate from hell at Whitemoor Mine.

Tailgate from Hell. Whitemoor Mine. 1995

I completed my command supervisors (deputies) qualification and worked as Deputy for about a year before retiring due to health problems in 1998.

All my mining drawings are real places where I’ve worked and events I’ve seen or been part of and have been drawn from memory and sketches I did at the time.

Karl

Many thanks to Karl for giving me his time, his memories and access to his amazing artworks.